
Farkas calculator

A short documentation

Christophe Alias

1 Syntax

prog: (parameters = { parameter, ..., parameter };)?
instruction ; ... ; instruction

instruction:

object

Display the object (iscc format for the polyhedra)

| ID := object

symbol table[ID] := object

| lexmin object
Display the lexicographic minimum of the object (expect a polyhedron obtained with
keep)

| set ID

Display “ID := ”, for iscc scripting

| comment ID

Display “# ID” and a carriage return, for iscc scripting

object:

ID

symbol table[ID]

| polyhedron

| affine form

| affine function

polyhedron:

ID

symbol table[ID] (expect a polyhedron)

| [] -> { [variable, ..., variable] : inequation and ... and inequation }
iscc-compliant definition of a polyhedron

| solve affine form = 0

Farkas identification on affine form (expected in Farkas form)

| define affine form with ID
Express the coefficients of affine form (named IDk) in terms of lambdas (expect
affine form in Farkas form)

| find ID1, ..., IDn s.t. affine form = 0

Farkas identification + projection on the coefficients for the affine forms assigned to sym-
bols IDk. This command has the same effect as projecting on ID1, ..., IDn the polyhedron
(solve affine form = 0)*(define ID1 with ID1) * ... * (define IDn with IDn).

| keep variable, ..., variable in polyhedron
Project the polyhedron on the variables, keep the variable order for lexmin. By commod-
ity, parameters are allowed among variables. Each parameter p among the variable list is
turned to the variable p counter.

| polyhedron * ... * polyhedron

Set intersection

inequation:
true

| false
| expression [>,<,>=,<=] expression

expression:

expression [+,-] expression

| INT * expression

| expression * INT

leaf affine form:

ID

symbol table[ID], expect an affine form

| { [variable, ..., variable] -> expression }
Build an affine form. Parameters are allowed and handled as constants.

| positive on polyhedron

Affine form positive on the polyhedron in Farkas form (expect a non-parametrized poly-
hedron).

| leaf affine form . affine function
Composition affine form ◦ affine function.

| INT * leaf affine form
Scaling

affine form:

leaf affine form

2

| leaf affine form [+,-] ... [+,-] leaf affine form

Function addition, expect the same input dimension. Constants are possible (then inter-
preted as affine forms).

affine function:

ID

symbol table[ID] (expect an affine function)

| { [variable, ..., variable] -> [expression , ... , expression] }
Build an affine function (expect non-parametrized expressions).

2 Examples

Affine scheduling with direct dependences

File poly.fk, launch with fk poly.fk.

#

Polynomial product, direct dependences

#

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

dependence := {[i,j,N]->[i - 1,j+1,N]};

D := find theta s.t. theta - (theta . dependence) - 1 = 0;

#Display the schedule domain (iscc scripting)

set schedule_domain;

D;

#Pick a solution

lexmin (keep theta_0,theta_1,theta_2,theta_3 in D)

Affine scheduling with relational dependences (PRDG)

File poly2.fk

#

Polynomial product, PRDG dependences

#

3

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

dependence := [] -> { [is,js,id,jd,N]: 0 <= is and is <= N and 0 <= js and js <= N

and 0 <= id and id <= N and 0 <= jd and jd <= N

and is+js = id+jd and is<id};

causality := positive_on dependence;

to_target := {[is,js,id,jd,N]->[id,jd,N]};

to_source := {[is,js,id,jd,N]->[is,js,N]};

D := find theta s.t. (theta . to_target) - (theta . to_source) - causality - 1 = 0;

#Pick a solution

lexmin (keep theta_0,theta_1,theta_2,theta_3 in D)

Affine scheduling with latency minimization

File poly3.fk

#

Polynomial product with latency minimization

#

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

dependence := [] -> { [is,js,id,jd,N]: 0 <= is and is <= N and 0 <= js and js <= N

and 0 <= id and id <= N and 0 <= jd and jd <= N

and is+js = id+jd and is<id};

#

Correctness: s -> t ==> theta(s) < theta(t)

#

causality := positive_on dependence;

to_target := {[is,js,id,jd,N]->[id,jd,N]};

to_source := {[is,js,id,jd,N]->[is,js,N]};

theta_correct := solve (theta . to_target) - (theta . to_source) - causality - 1 = 0;

theta_def := define theta with theta;

#

Efficiency: theta(s) <= latency(N), then min latency(N)

4

#

L(N) >= 0 on the parameter domain

latency := positive_on ([] -> {[N]: N >= 0});

theta(i) <= L(N) \forall i,N

bound_theta := positive_on ([] -> {[i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N});

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta- bound_theta = 0;

bound_def := define latency with latency;

Display the result

lexmin (

keep latency_0,latency_1,theta_0,theta_1,theta_2,theta_3

in theta_correct*theta_def*theta_bounded*bound_def

)

Affine scheduling with dependence selection

File poly4.fk

#

Polynomial product, parametrized delay

#

parameters := {eps,inv_eps};

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

dependence := [] -> { [is,js,id,jd,N]: 0 <= is and is <= N and 0 <= js and js <= N

and 0 <= id and id <= N and 0 <= jd and jd <= N

and is+js = id+jd and is<id};

#

Correctness: s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <= 1

#

causality := positive_on dependence;

to_target := {[is,js,id,jd,N]->[id,jd,N]};

to_source := {[is,js,id,jd,N]->[is,js,N]};

theta_correct := solve (theta . to_target) - (theta . to_source) - causality

+ {[is,js,id,jd,N] -> -1*eps} = 0;

theta_def := define theta with theta;

5

eps_correct := [] -> {[i]: 0 <= eps and eps <= 1 and inv_eps = 1-eps};

Display the result

lexmin (

keep inv_eps,theta_0,theta_1,theta_2,theta_3

in theta_correct*theta_def*eps_correct;

)

Affine scheduling with latency minimization and dependence se-
lection

File poly5.fk

#

Polynomial product, final

#

parameters := {eps,inv_eps};

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

dependence := [] -> { [is,js,id,jd,N]: 0 <= is and is <= N and 0 <= js and js <= N

and 0 <= id and id <= N and 0 <= jd and jd <= N

and is+js = id+jd and is<id};

#

Correctness: s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <= 1

#

causality := positive_on dependence;

to_target := {[is,js,id,jd,N]->[id,jd,N]};

to_source := {[is,js,id,jd,N]->[is,js,N]};

theta_correct := solve (theta . to_target) - (theta . to_source) - causality

+ {[is,js,id,jd,N] -> -1*eps} = 0;

theta_def := define theta with theta;

eps_correct := [] -> {[i]: 0 <= eps and eps <= 1 and inv_eps = 1-eps};

#

Efficiency: theta(s) <= latency(N), then min latency(N)

#

6

L(N) >= 0 on the parameter domain

latency := positive_on ([] -> {[N]: N >= 0});

theta(i) <= L(N) \forall i,N

bound_theta := positive_on ([] -> {[i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N});

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta- bound_theta = 0;

bound_def := define latency with latency;

Display the result

lexmin (

keep inv_eps,latency_0,latency_1,theta_0,theta_1,theta_2,theta_3,eps

in theta_correct*theta_def*eps_correct*theta_bounded*bound_def;

)

7

